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Diffusion on random hierarchical structures 

Ayse Erzant, Siegfried Grossmann and Aurora Hernhndez-Machadof 
Fachbereich Physik, Philipps-Universitat, Renthof 6, D-3550 Marburg, West Germany 
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Abstract. We study diffusion on a statistically self-similar fractal substrate with random 
transition rates possessing a hierarchical structure. The master equation is solved analyti- 
cally by means of a recursion technique and different choices of random hierarchies for 
the transition rates are considered, leading to algebraic, stretched exponential or exponen- 
tial-logarithmic behaviour for the moments and the correlation decay. Making use of the 
central limit theorem, analytical expressions for the fluctuation corrections to lowest order 
in the relative variances are derived for the first two cases where the behaviour is qualitatively 
the same as in the systems without fluctuations. The sign of the corrections turns out to 
depend on the temporal and spatial scale at which fluctuations are externally suppressed; 
they are negative if the diffusion is taking place at smaller scales, positive otherwise. The 
relevance to diffusion in a turbulent medium (intermittency corrections) is discussed. 

1. Introduction 

Anomalous diffusion has recently attracted a great deal of attention, mainly from the 
point of view of glassy relaxation (for a recent review see Blumen et al [ 13). Random 
walks ( R W )  on percolation clusters [2] and other fractal structures [3], as models for 
random media, were investigated by many authors [4]. Following the work of MCzard 
et a1 [5] elucidating the ultrametric character [ 6 ]  of the equilibrium set of states of 
the infinite-range spin glass, much effort was directed to the problem of diffusion on 
ultrametric spaces with a hierarchy of relaxation rates [7-191. 

In contrast to R W  on such fractal substrates as percolation clusters [2-41 where the 
variance of the relative displacement, (x2 ) - f ’2  with 8,< 1, enhanced anomalous 
diffusion is observed in turbulent media, with the remarkably large exponent = 3. 
Wegner, Grossmann and Hoffmann have introduced a model [ 15-17] where the phase 
space of the diffusing particle is represented by a Cayley tree with uniform branching 
ratio z; the kth level nodes of the tree are associated with intervals of spatial extent 
p k ( p  > 1). (The reader is referred to [15] for a detailed discussion.) The nesting 
property of these intervals leads to the fractal dimension DF = In z / ln  CL for this space 
on which the particles are diffusing. Transition rates associated with successive bonds 
scale by a uniform scale factor s (where s may be less than, equal to or greater than 
one) leading to a self-similar structure for the eigenvalue spectrum and to algebraic 
behaviour of the autocorrelation function Po([) - f - ”  and of the moments of the 
displacement from the origin, (x”)( t )  - f””’ .  

The model’s parameter space displays a rich variety of RW with ‘phase transitions’ 
[9] between them, as well as ‘pseudotransitions’ where the dependence of 8, on the 
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parameters, or even the functional form of the moments (algebraic or exponential) 
themselves, may change abruptly with m (as also observed by Derrida [20]) keeping 
the other parameters fixed. The exponent Y describing the decay of correlations agrees 
with the glassy relaxation models where the barrier heights (i.e. the relaxation rates) 
depend exponentially [ 7 -  131 on the ultrametric distance between the states. 

The purpose of the present paper is to study the effect of random fluctuations 
[14,21-281 in the model parameters on the long time behaviour of the moments and 
correlations. We replace the homogeneous fractal substrate by a more realistic random 
fractal structure where the branching ratios and  the length scaling factors are allowed 
to vary randomly from level to level. We moreover allow the transition rates WE 
(where * denotes transitions upwards or downwards from level k )  to be random. 
Moments and  correlations now have to be averaged not only over different realisations 
of the RW but also over all possible realisations of the random parameters, which we 
assume to relax more slowly than the leading transition rates associated with the RW. 

To be able to treat the case of arbitrary W ;  a renormalisation-group-like recursion 
relation (similar in spirit to that considered by Sibani [ 131) is developed for the solutions 
of the master equation ( M E )  in Laplace space [23], and  the eigenvalues obtained 
analytically in terms of the transition rates. In this way we are able to treat three 
possible models leading to different distributions for the W : :  

(i) The ratios sk = W:/ W l - ,  are distributed independently from level to level. 
(ii) The W :  = (E:=, with ui independently distributed from level to level. 
( i i i )  W: = wt, and the wk are distributed independently according to p (  w )  defined 

on (0, 1) with a relative variance much smaller than one. 
These choices generalise, in a natural way, previously studied models with hierarchi- 

cally ordered relaxation times [7-11, 15-17]. The first choice (a similar random 
hierarchy is considered by Schreckenberg [26] and by DeDominicis [27]) reduces on 
average to relaxation times depending exponentially on the level of the hierarchy and  
can be used either to model a turbulent medium which has this scaling property, or, 
say, a glassy structure with energy barriers scaling logarithmically with cluster sizes 
[24] in the case that the cluster sizes themselves form a (statistically) self-similar 
hierarchy. In this case the self-similarity of the eigenvalue spectrum, in the ensemble, 
and therefore the algebraic behaviour of the moments and  correlations reported 
previously [15-171 is preserved (see also [26]). The model affords the extra freedom 
of choosing the time and length scale at which the system is prepared. Given a reference 
level L, where the fluctuations are suppressed, e.g. due  to external forcing, for ( k  - L/ 
sufficiently large, the W ;  themselves are distributed according to an approximately 
log-normal distribution as long as the distribution functions for the s k  satisfy the 
conditions for the central limit theorem (CLT). Using the CLT we have calculated 
corrections to the exponents Om and v to first order in the relative variances 6?= 
( ( 8  In .)2)/(ln .)2. The sign of the correction terms depends on whether the diffusion is 
taking place above (+) or below (-1 the level L. The results can be summarised for 
s k  < 1 and  w:-l/ w;> 1 (almost all k )  as 

(1.1) e,,, =( ( In  p ) / ( h  s-’))[m*+m’(ln p)(6 ;+6 . f ) ]  

where p k ,  the length rescaling factor and zk, the branching ratio, are independently 
distributed from level to level, so that the extension and the number of sites at any 
level also obey approximately log-normal distributions by construction. The result is 
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valid only up  to first order in the variances, so it is assumed that (In p ) m (  6; + G:) << 1 
and (In z ) ( 6 : + c r i ) < <  1 in (1.1) and (1.2). We have also calculated the exponent 8, 
for a two-delta-function distribution of the ratio W l /  W; ,  which is the relevant time 
rescaling factor in the region sk < 1, W;/ W,, ,  < 1, without recourse to the CLT. This 
allows us to study the corrections due to fluctuations in the case of arbitrary m and  
variances limited only by the requirement that the qualitative form of the spectrum is 
preserved. 

The second choice (ii) extends models where the relaxation times depend algebraic- 
ally on the ultrametric distance between states [ 113 or, say, the cluster sizes determining 
the energy barriers increase algebraically with the level of the hierarchy [24]. (In the 
latter case y is a temperature-dependent exponent.) A similar model has also been 
studied [27] in the context of the dynamics of the random energy model [29]. With 
this choice the level where the fluctuations are externally suppressed can be fixed at 
will by taking 

L o r k  

(w;)-”y = W,+ 1 sgn(k-L)u ,  
I = k + l  or  L+ I 

and under the usual conditions for the distribution of the U, the W;’” obey approximate 
log-normal distributions via the CLT. We find stretched exponential behaviour for the 
moments and correlations in this case as also reported by Rammal [24] and others 
[7, 11,25,27]. It is interesting to note that this is quite independent of the particular 
choice for the original distribution chosen for the U,, as long as the leading relaxation 
rate depends, on average, algebraically on the level of the hierarchy. 

The third possibility considered above (iii) is that the W ;  are distributed indepen- 
dently of each other, according to distribution functions that depend on k in such a 
way as to favour longer relaxation times for higher k. We find that for p ( w )  with 
sufficiently small variance and w bounded strictly away from one, only logarithmic 
corrections are introduced to the power-law behaviour in the region W l /  W i + ,  > 1. 
Allowing p (  w) to be finite at w = 1 leads, within an  approximate calculation, to a 
divergence of all the moments for any t (this corresponds to the result, found in [ 16, 171 
for the pertinent parameter region, that (x”)( t )  is infinite for all t or depends exponen- 
tially on t ) .  On the other hand, for p ( w )  exp[-(1- w)-O], a > 1, we find an  
exponential-logarithmic [30] behaviour for the moments, namely 

((x,))~( t )  - exp[ C,(a)(In r ) u ” n - l ’  1 (1.3) 
where C,(a)  depends on m and a but not on t and (. . .), denotes the configurational 
average. This type of behaviour has been previously reported by Scher and Lax [31] 
who have considered hopping rates depending on random hopping distances x as 

The paper is organised as follows: 9 2 presents the full analytical solution of the 
master equation for an  arbitrary realisation of the random parameters, by means of 
an  exact recursion relation. The eigenvalue spectra are obtained in various parameter 
ranges. 

Section 3 deals with the calculation of the quenched averages of the functions 
( x ” ) ( t )  and P,(t) and the extraction of the exponents Om and v in case (i)  above. 
Section 4 contains a discussion of the results obtained for Om, v in this case as well 
as an application of the present model to the case of diffusion in a turbulent medium. 
Finally, § 5 summarises the results of the computations with the other two models, 
introducing randomness as discussed above. 

w ( ~ )  5 , - cons t rn tx r  
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2. Derivation and solution of the recursion relation 

The space on which the R W  is to take place is displayed in figure 1. In the particular 
case of diffusion in a turbulent medium, the states represent the possible values of the 
two-particle distance with one of the particles attached to the origin at k = 0. Following 
[15-171, let us define the quantities q j f ) ( t ) (k  = 0, .  . . , I )  describing the probability of 
a phase point to be at the kth level at time t without having exceeded the Ith level up  
to this time. The functions qL')( t )  turn out to be the quantities needed to obtain the 
autocorrelation function or the moments of the distance from the origin. Their relation- 
ship to the first passage-time problem has been commented upon by Honerkamp and 
Baumgartner [ 181. Since they are summed quantities, pertaining to clusters of states 
at level k, with ultrametric distance s 1 - k, their dynamical behaviour does not depend 
on z ;  the M E  in terms of dimensionless time becomes [16, 171 

q : " ( t )=  w;-lqpl(z)-( w;+ w:)q;'(t)+ W;+lq(k/:I(t) (2.1) 

where q c )  = 0 for k < 0 and  k > I; W ;  are the transition rates from the kth level to the 
next higher (+) or lower (-) level, respectively. Due to the lower cutoff on the Cayley 
tree [ 161, W ,  = 0. 

k z  3 

k = 2  

k = l  

k.0 

I *P3 

I I A  

w ;  I 

Figure 1. A representation of the lower left corner of a given realisation of the random 
hierarchical substrate. The levels k = 0 , .  . . , 3  with branching ratios zI are  shown. Each 
branching point as  well as  all the endpoints stand for possible states. The horizontal bars 
at each level k represent the linear extension associated with clusters of states having a 
common 'ancestor' at that level. The extension undergoes a dilation (contraction) by a 
random scale factor p I ( p ; ' )  at each successive level above (below) a chosen level (here  
level 2 )  at  which fluctuations are  suppressed due  to,  say, external forcing. The R H S  of the 
figure illustrates the master equation, ( 2 . 1 ) ,  for the functions q : ( t )  (see text):  here / = 3 .  
Each level k appears  as  a vertex, with three types of vertices, k = 0 (0 1, 0 < k < I (0). k = I 
(0) to be distinguished from each other. 

To derive a recursive solution for the qi" ,  we Laplace transform equation (2,1), 

(2.2) 
Dividing throughout by &"(U)  for k > 0 and defining 4:"(w) = i \ " ( ~ ) / i i ? , ( w )  as 
well as 4b"(w) = &" for k = 0, so that 

and obtain 

w<k"(U - 6 1 , O  = wl-lik'?l( U )  - ( w, + w;)ii"( U )  + W ~ + I @ ~ ' ~ I (  U ) .  
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we obtain the full solution in terms of the recursion relations which follow directly 
from the Laplace transformed M E :  

(2.5) 

In order to study these recursion relations, it turns out to be convenient to introduce 

w;/ WZ-1 E sk ( 2 . 6 ~ )  

W;-,/ W ,  = rk (2.6b) 

w;/ w, = l l k  ( 2 . 6 ~ )  

with uk = rksk. In what follows the { W t } ,  { s k } ,  or { u k }  may be considered as indepen- 
dently distributed random variables. The choice of { s k }  (or { u k } )  as the independent 
random variables has a physically interesting consequence, namely, it allows us to pick 
the level (scale) at which the system is prepared (e.g. stirred) merely by picking 

the following ratios as auxiliary quantities: 

w; s;' k < L  

w; n s, k >  L. 
(2.7) 

~ = h + l  I '  I = L + I  

w; = 

Clearly, if the s, are independent random variables, the W ;  fluctuate more strongly 
the further k is from L, due to the increasing number of factors. 

We now determine the poles, w i " ,  i = 0, . . . , I ,  of the c j f ) ( w )  for an arbitrary set of 
transition rates { W t } .  These wl" are equal in modulus to the eigenvalues A: ' )  of the 
M E  (2.1), which are real and positive, as the following argument [17] proves. The 
tridiagonal, ( I +  1) x ( I +  1) matrix defined by the M E  (2.1) can be brought into symmetric 
form by a change of variables qL"= r"* uk ( ' I  for uniform r = W:/ W i + l ,  otherwise 
arbitrary W;,  thus ensuring that the 1 + 1 eigenvalues are real. Furthermore, one may 
show [17] that this matrix is positive definite. From now on we fix rk = r, 

To determine the wi" ,  first recall that for k >  I ,  c j : "=O and thus 4 i " ( k >  1 )  = O .  
Now note, from equations (2.4), that 4 i " ( w )  has just one pole at 

(2.8) 

and no zero, while 4! ! ' , (0 )  has a zero at w i " .  In fact, i t  is easy to see from this 
recursion relation that 4:" has ( I  - k )  zeros, given by the poles of 4r l ,  , and 1 - k + 1 
poles. It then follows from equation (2.3) that the poles of & " ( w ) ,  all k, are given 
precisely by the poles of 4 b " ( w ) ,  since the poles of the 4 i " ( w )  successively cancel 
with the zeros of q5:!l(w), i = 1 , .  . . , k. We therefore need only to determine the I +  1 
poles of 4 b " ( w ) .  

We now derive a recursion relation to calculate 4b"(w)  and determine all its poles. 
Consider generating a finite, ( I  + 1)-level subset of the Cayley tree as in figure 2 from 
a site with level-index I ,  attaching, successively, the lower level branches. Let us 
associate with this construction, functions 4;"" I ,  where 1 indicates the level-index where 
the construction is initiated, n counts the generations of branches already attached to 

wi" = -( w; i- W,) 
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1 - 1  0 

1 - 2  

/ - 3  

Figure 2. The first steps in the recursion (2.13). starting from a tree consisting of a single 
vertex (a  1-cluster), extending to a 2-cluster located at I ,  a 3-cluster, etc, by successively 
introducing more and more 0 vertices below 1. The recurrence ends after I steps, giving 
an I cluster which coincides with the original I cluster for which one wants to calculate 
the G:" (w)  and whose transition rates are the W ; .  The q5) ' . " ' (w)  of the intermediate steps 
are indicated. W ;  = 1 in the text. 

1, and j denotes the levels of the ( n  + 1) cluster, i.e. j = 0, 1, . . . , n. Of course, 4:"" = 0 
if j >  n. Note that 4:'-"= 4;". We may show, in particular, that (figure 2) 

4; I (  w ) = 4; !; - ' I (  s ;2" + 1 w ) . (2.9) 

4 j ' , " ' ( w )  and 4 J $ ' ( w )  obey the same relation as equation (2.4), with W ;  replaced by 
W;-n+k. Putting all this together with equation (2.5), we obtain the recursion relation 

(2.10) 

Let us briefly comment on the fixed points of recursion (2.10), although we d o  not 
use them further. Under repeated iterations of n, 4b'-"(w) is driven to 4b',"' and the 
argument w to wn:,, sI-,,+,. For any finite w, this tends to 0 for sA < 1 almost all k, 
as 1 (and n )  get large. Conversely, for sk > 1, any finite w will get arbitrarily large. 
Thus w = 0 is a stable (unstable) fixed point for sk < 1(> 1). Note that the recursion 
relation in equation (2.10) has the form of a renormalisation group transformation. 
For uniform U the fixed points for the transformation at w = 0 are (4*)- '  = (1 - U-') W,' 
and (4 * ) - '  = 0, stable, respectively, for U > 1 and U < 1. In the case of random uk the 
transformation at each step depends on the particular realisation of the uI. 
configuration. For uk predominantly bigger than one, a finite limit is still approached 
by 4b'9"' for n + 1, I + 00, whereas for u k  predominantly less than one, [ 4b',"']-' --* 0 in 
this limit. This can be seen from the linearised recursion relation, equation (2.15). 

Since the 4b '9" ' (w)  are identical to the functions i P ' ( w )  with only a relabelling of 
the levels and  the transition rates, they have n + 1 poles which lie on the negative real 
axis for any finite n. They may approach the origin for 1, n --*CO if sk < 1. Let us now 
concentrate on this case. Observe from (2.5) that 

(2.11) 

which has a pole at wb'?O'= - W;.  Substituting in (2.10) gives rise to two poles. For 
r >  1, one gets to lowest order in r - ' ,  sI (or (rsI)-I when rsI> l ) ,  

w ( I . I '  1 - - - W,+S'. w,+ wb'." - 
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Iteration gives rise, at  each successive level, to a new pole at wb'*"'= - W:, while the 
n poles present at level n - 1 are renormalised by s' - , ,+~ appearing in the argument of 
4;"-", cf (2.10). This leads to 

I - n T ,  

w ( l . n )  , - - - w,+ n s, j -  1 , .  . . , n n = 1 , .  . . , 1 .  (2.12) 

w;'.' - ( 1 + r - l )  W ;  w ( ' . I  l I - - - W i n ,  

, = / - , + I  

For r <  1, the poles generated at the first stage of the iteration are 

to lowest order in r, sI, rs'. Considering 4 ( ' 3 n - ' ) ( s / - , y , w )  at w near the outermost pole 
(i.e. that with the largest absolute value) we find for successive n > 1, that 4" . " ' (w )  

while for general n they obey the recursion relation 
has a new pole at w b l . n ) ~ - ( r ~ ' R b ' . " ~ " + l )  W:. The residues are Rb'."'= 1, Rb""= r, 

for which an attractive fixed point at r l '*< R,< r / s I - n + l  exists. As in the previous 
case the poles generated in this way are renormalised at each successive stage by s ! - ~ + ~ ,  
giving rise to 

/ - f l + J  

(1 .n )  I - r - l  w,+ n s, j =  1 , .  . . , n - 1  n = 2 , .  . . , I  WJ , = I - n + I 

up to prefactors that d o  not affect the scaling behaviour. After I iterations one finds 
wI - w, which can be summarised in terms of the transition rates themselves, again 
u p  to harmless factors, as 

( ' 1 -  I!.') 

j =0,  . . . , l 
j = O , .  . . , 1-1 

r > l  
r < l .  

(2.13) 

The pole U : ' )  in the case r < 1 turns out to be well separated from the bulk of the poles 
given in (2.13) and  very close to the origin (cf [16, 171). To determine its position 
precisely, we consider the recursion relation (2.10) near the origin, putting W,'= 1 for 
simplicity from now on. 

Let us make the ansatz, for small w,  

~ b ' . " ' ( w ) = { [ ~ ; ' ~ " ' ( o ) ] - ' + ( l + a , ) w } - l .  (2.14) 

For s k  > 1, we are forced to take a, = 0, since any finite w is driven to infinity under 
repeated iterations. For s k  < 1, the a, term remains finite and renormalises the pole. 
Then, the pole of 4 i ' . " ' ( w )  will be given by the expression -["""'(0)]-1(1+ U , , - ' .  We 
get, from (2.10), recursion relations 

&'."yo, = u;:,,+'q!&+I!(o)+ 1 (2.15) 

(2.16) 

From (2.15) we obtain 

(2.17) 
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Let us turn briefly to the case of uniform r, s. Performing the sum in (2.17) 

(2.18) 

We distinguish two markedly different regimes: 

(2.19) 

Substituting in (2.16) we find, again for uniform r, s, with s < 1 

u < l  
- l ] (us  - l)- l  u > l  

(2.20) 

The results for the additional pole of 4;'' obtained in this way are summarised in table 
1 for the uniform case, and the relevant parameter ranges indicated in figure 3. They 
coincide with those given in [ 16, 171. 

Analogous results are obtained for the case of random sk. If the series for GA(0) 
and a, are approximated by their largest terms in each of the different ranges, where 
it will be assumed that the uk typically are < 1 (or > 1) and  r S 1 almost all k, etc, we 
have 

I n uk  B,  c - w;"  == 
k = l  

I 

I 

>> n Sk AIJ 

= O(1) Al.1 9 D. (2.21) 

k = l  

Let us recall that the rest of the eigenvalue spectrum is directly given by the transition 
rates themselves. It is useful to index the eigenvalues in increasing order. Then the 
bulk of the eigenvalues is given, for s k  < 1 (almost all k ) ,  to leading order in r - '  

(2.22) k =  1 , .  . . , I A ( / ) =  k w;-k+  W I - k + l  

Table 1. The extra eigenvalue i h ' '  in the various regions. In the regions B and C, i;'' is 
smaller than and well separated from the bulk of the eigenbalues. In region A2 it merely 
joins, as the smallest member, the sequence of eigenvalues in the bulk.  In A,,,, since 
( r s ) >  1, it is clearly much larger than the smallest eigenvalue in this sequence. In regions 
A,, ,  and D it  is a constant O(1) with no dependence on 1. Here the smallest eigenvalue IS 
s '  and stems from the bulk 

s < l  
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\ 
c \  

\ 
r s  - 1  

0 -  
I n  s 

Figure 3. The notation for the various ranges in the parameter space (In s, In r )  that have 
different eigenvalue spectra (cf [ 161). Different diffusion laws and different correlation 
decays hold in A, B, C, D, and, of course, on the corresponding boundaries which are not 
considered here: these boundaries are smeared out due to the fluctuations of the r i ,  sI.. 

from (2.13). From (2.21) we get (again for s k  < l) ,  
I /  

(2.23) 

in A l .  
Having thus obtained all the eigenvalues ((2.22), (2.23)) directly in terms of the 
transition rates themselves, we now have a choice as to which variables to consider as 
independently distributed. In the following and in § 3 we will consider the case where 
the {sk} or  the { U k }  are taken as independent random variables. In  § 5 the cases 
W l =  (E: U,)-' and W: = wt will be considered, with U, and wk being independently 
distributed. 

Finally, the function c j ) (w)  is 

The inverse Laplace transform yields 
l 

4 j l l (  t )  = c ( l l  e-A:"I 

r = O  
, 

(2.24) 

(2.25) 

(2.26) 

We have used in (2.25) the explicit forms of W ; ,  (1 + a l )  and A i l ' ,  and the fact that 
for u k  < 1 one has 

whereas for uk > 1 
1 - 1  I I 
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$ " ( r )  = q(k('(t) (3.2) 
k = O  

is the probability for the diffusing particle to be found somewhere between levels 0 
and 1, provided it has never exceeded level 1. The { ' " ( t )  depend implicitly on the 
random transition rates through the eigenvalues. 

Provided that the pk are independently distributed from level to level, performing 
the p average yields 

( (xm) ) , ( r )  = A Y  C exp[(l- ~ ; ~ ~ ] ( ~ ' " ( t ) - 9 4 ' ~ - ' ) ( t ) ) ~  
L 

1x0 

where U",=*ln(p*m),. Here (. , .), denotes the average with respect to the 
distribution if it is identical for all levels. In the more general case it means 

(fi p ; m ) " ( L - l ' .  

k = l + l  

Note that U ;  has in general a non-linear dependence on m (this will be made explicit 
in the later discussion involving the use of the central limit theorem, cf (3 .20 ) ) .  

The function # l ' ( t )  satisfies, via (2 .1) ,  the relation 

$ " ( r )  = - w ; q ; " ( r )  (3 .4)  
where qj l ' ( t )  is given explicitly by (2 .27)  and (2 .28) .  

Case (i). From this point on, till the end of this section, we confine ourselves to the 
case ( i )  considered in the introduction, and choose the transition rates W ;  to be of 
the form given in (2 .7) ,  with the ratios sL = W : /  W l - '  being independently distributed 
random variables. (Cases (ii) and (iii) will be treated in § 5 . )  

Let us now concentrate on region B, where the lowest eigenvalue, Ab"=n:=, U&, 
is well separated from the others, i.e. Ab"<< A:". It is easy to show under the condition 

P T U k  < 1 almost all k (3 .5 )  

that the infinite series in (3 .3 )  converges uniformly with respect to t ,  thus allowing us 
to interchange the sum over 1 and the derivative with respect to r. Fixing L = 0, we 
have from (2 .7 )  

qi"(t)  = (W;)-'A~'exp(-Af't)G,(A:''r) 
which, with (3 .4 )  and (3 .3 )  yields 

I 

((x"'))c(t) = ex"1U~)(A~'~''GI-,(A:'-''t)-A~'Gl(A:')t)), 
l = O  

where the time derivative on the R H S  has been taken term by term (we set 1).  
Note that with condition (3.51, each of the two terms in the sum above tends to zero 
with 1, separately. Taking the one-pole approximation to q;"( t ) ,  i.e. letting G (  7 )  - O( l ) ,  
we get 

x 

Had we not taken L=O to begin with, the expression within (. . .), would have been, 
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e.g. for 1 < L, 

- I '  ( k = l  
W L  s k  r exp - rsk t ) .  

A = l + l  

In physical terms, L=O corresponds to a situation where the 'impurities' are being 
introduced at the same scale as that at which the system is prepared and we consider 
only the time evolution at scales larger than this initial scale. 

We consider the two-8-function distribution for the uk 

p ( u k )  = pa8(uk - + ph8( u k  - U h ) .  (3.7) 

For small enough variance, crt = p,pb( U, - Uh) ' ,  such that the overall form of the 
spectrum is preserved and  the well separated eigenvalue can still be distinguished 
(Ab"<<  A:") ,  the approximate expression in (3.6) is valid. Performing the configuration 
average yields 

Making a saddle-point approximation to the double sum over n and I and neglecting 
corrections to the saddle point which introduce logarithmic factors in t ,  one finds 
((xm))J t )  - tat"', with 

The parameter 6 is just the ratio of the saddle point in n and 1 and is to be determined 
from 

In U, In( 1 - 6 )  - In ub In 6 = U: In( U,/&) +In U, In p h  - In uh In p a .  (3.10) 

For U, = ub, e,,, reduces to e',"'= m In p / h  U - '  as found in [16,17]. For U, different 
from U b ,  5 and therefore e,,, depend non-linearly on m even in the case of uniform p, 
for which U ;  = m In p. It should be noted that BO = 0, as it should be. Initially 8, 
against U: has a slope -(In U- ' ) - ' .  For very large m, one sees from (3.10) that 6+ 1, 
and  e,,, -(In p ,  + U i ) / l n  U,' for the choice U, > U,,. Thus for very large m, ern is once 
more linear in U:, this time with a slope l / l n  U;' > l / ( ln  U- ' ) ,  the latter being the 
slope in the pure case, if we identify (In U - ' )  taken with respect to the distribution in 
(3.7), with the value of In U - '  in the pure case. We have sketched the behaviour of 
e,,, with respect to U: (or m, for uniform p )  in figure 4. 

0 m o r  U; 

Figure 4. The moment growth exponent O,,, against m or U:,, schematic. The i n i t i a l  slope 
is determined by ]/(In U-'), the  final slope by u, , (>u , ) ,  namely, l / l n  U;'. The  location 
of the crossover region depends on the variance of the U fluctuations: m( ln  p ) 6 : , ~ 0 ( 1 ) .  
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To be able to evaluate the configuration averages in the more general case, we 
make the observation that if the u1, are independent random variables and the uk 
distributions fulfil the conditions of the  CLT, then y = In Ab” = Z k e l  In uk will be approxi- 
mately distributed according to 

I 

where 

(3.11) 

(3.12) 

Here (. . .), means the average taken with respect to the U distribution. In this case 
this depends on the level 

In what follows, similar averages will occur for s k ,  pk, zk, etc, which should be 
understood in the same way. We will henceforth drop the index U (s, 1.1,. . . ) where 
no confusion is likely to arise. Care should be taken, however, in calculating moments 
using (3.11). It has already been remarked by Mandelbrot [32] that higher moments 
of an  approximately log-normal variable differ increasingly from their true values in 
as much as the original distributions differ from the Gaussian. In particular it is easy 
to see that the calculation of (hb”)=(e’) using the distribution in (3.11) yields results 
that are only correct up  to O(u:) for a general U distribution. Therefore we restrict 
ourselves to distributions with sufficiently small variances. Evaluating 

cr 

( A b “  exp( -Ab”t)), = P I ( y )  exp(y - e’t)  dy 
- x  

via a saddle-point approximation gives the condition 

where j I  is the value of y at the saddle point. 

(3.13) 

Substituting in equation (3.6) gives 

neglecting corrections to the saddle point as well as the normalisation factor, both of 
which eventually introduce logarithmic corrections in t but which have no effect on 
the exponent. Once more using the saddle-point approximation to evaluate the sum 
over 1 we get the additional condition 

(3.15) 

for the saddle point [ which is a function of t .  One realises that the quantity yo = i 
satisfies a quadratic equation with i-independent coefficients, i.e. does not depend on 
f. One then has 

0- - ( Y -t - 2& U;)’’? (3.16) 



3926 A Erzan, S Grossmann and A Herndndez-Machado 

which is also independent of t .  Introducing y*, = ry, into (3.13) gives 

(3.17) 

Inserting this into (3.14) we recover, up to logarithmic factors in f, the algebraic form 

( (xm))c(  t )  - f e , ~ ~  (3.18) 

where em turns out to be 8, = ( y o - j , ) / u t .  Substituting from (3.16), 

Y 
U; 

e m = -4 [ 1 - (1  - 2u: u ; /p~)1 '2 ] .  (3.19) 

We again see that the dependence of 8, on m is in general non-linear. 

first order in a: = ((6 In p ) ' )  by 
Applying the CLT once more to the p distribution, we may approximate U :  to 

U: = m(In p ) * + m 2 u $ .  (3.20) 

Then, expanding (3.19) to first order in the relative variances &I = ((6 In .)2)/(ln .)' we 
find 

where e:"'= (In p ) / ( ln  U - ' ) .  Thus, for L = 0, the correction to Om is increasing quadrati- 
cally with m for (In p ) m ( & i + & : ) < <  1. Expanding the exact result for 8, calculated 
for the two-&function distribution (3.7) to first order in the variances, we recover 
(3.21). Hoffmann, who considered fluctuations in p [33], also found correction terms 
proportional to m' in lowest order of the p variance as well as in (Spk6pkrl ) ,  the 
nearest-level correlation for the p fluctuations, for a restricted time range. Setting 
&$ = 6: = 0 in (3.21) we recover the results given in [ 16,171 for the corresponding 
parameter region. Again, for m = 0, BO = 0. 

Let us now turn to the parameter region A where there is no well separated 
eigenvalue. From (2.22) and (2.23) we see that in regions A, and A2 

A:"= WT-k(l+r-l)  k =  1, .  . . , 1 

while Ab" = W:. Notice that the presence or  absence of the factor (1  + r-I) does not 
change the asymptotic dependence on 1 of the eigenvalues A:', apart from introducing 
time-independent factors in the averages, and  we may therefore treat A I ,  A2 on the 
same footing. For later convenience we choose In W, = L(ln s). 

Once more making use of (3.4), with (2.27) and the fact that g(s.,) = dG(T)/dT, we 
may rewrite (3.3) 

(3.22) 
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Let us consider for now the first sum appearing above. We define as before the variable 
y = X:kL,,+l In sk distributed, under the usual conditions, according to 

p L - / ( y )  - exp{-4[y - (L- O j 5 1 2 / ( ~ -  I)d} 
with 

j c  =(In  s) (T: = ( ( 6  In s)') 

We note that for sufficiently large I the difference A,G = G,-,(Ab'-'lt) - G,(A;'t) is a 
very sharply peaked function at Ab"t - 1 ,  falling away to zero everywhere else. Going 
over from the sum to an  integral over I and approximating A,G by 6 (  In t + In W ,  - y ) ,  
we have up  to constant factors 

((x")),(t) -AY d l  dy  6(ln t + L j ,  - Y ) P L - L Y )  exp[(l-  L )  U,]. (3 .23)  

Clearly, for j c  <0 ,  the integral is non-zero only for In t / ( - j , ) <  L (positive values of 
y are rapidly suppressed by the Gaussian factor). We obtain 

( ( x m ) ) c ( t ) - A Y  IoL dIexp[(I-L)U,]P,_,(ln t + L j , )  (3.24) 

where the distribution over y has been effectively converted to a distribution function 
for I :  

P,_,(ln t + L j , )  - exp 

We substitute for I in the denominator its mean value, f = l n  t / ( - j 7 ) ,  observing that 
the denominator is already O((+f), in the same spirit as before. The Gaussian integral 
can now easily be performed. If  we once more make the log-normal approximation 
to the p distribution (3.20), and choose In A L  = L(ln p )  for convenience, we find in 
analogy to (3.18), (3.21), 

(3.25) 
up  to logarithmic factors in 1. Here In T =  L / j , /  and we have defined e',"'= 
m(( ln  p) / ( ln  s- ' ) ) .  Physically T is the timescale of the 'stirring force' at  level L. We 
once more recover the deterministic results of [16,17]  when $, 3; vanish. Now 
observe, however, that the corrections to the deterministic case come in with a negative 
sign. On the other hand, for t > T, the non-trivial time dependence of ((x"'))~( t )  comes 
from the second sum in (3.22). The computation proceeds along the same lines as 
before, and we get, finally, 

(3.26) 
The behaviour of 0, with m for t S T has been sketched in figure 5. Strictly speaking 
there is a crossover region, where (In s-')lL - f /  - /In( I /  T)I is small, and where the 
application of the CLT is not justified, so that equation (3.26) should really be interpreted 
as being valid for t / T  >> 1 or t /T<< 1, with t and T both large. 

The other quantity of interest that we can calculate is the exponent v of the 
correlation decay and this we will d o  also taking the form (2.7) for the transition rates. 
The autocorrelation function, i.e. the probability of return to the origin at time t ,  having 
been there at t = 0, is given by 

( ( x m ) ) c (  t )  - re!: '( t /  T ) - j m B ! , ~ ' ( i n r ) ( i r ~ + ~ j  

((xm))c( t )  - le!,:'( t /  T):S8"[ l" (r /T) lm8 , :~ ' ( lnr ) ( i r :+8 i )  

(3.27) 
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0 0 
m 

Figure 5. The exponent o f  the temporal moment growth e,,, against the order m of the 
moment, in region .4. I f  there are no parameter fluctuations one has e,,, = me:“’ with 0;“’ 
defined by In p / l n  s-’. I f  the parameters fluctuate, O‘,v’=(/np)/(ln s-I) and there is a 
quadratic correction to e,,,. Its magnitude r depends on the relative variances, r =  
$(In p)(6:+ et), and its sign on whether the diffusion occurs below ( - )  or above (+) the 
scale setting level L. The expression is valid for small variance, m r c <  1. 

where zi are the branching ratios at each level i, each z, > 1, so that the sum is rapidly 
converging. Making a one-pole approximation to the function qb”(t) ,  where we just 
take the smallest eigenvalue, we find in region B where A:’ = II! 

8 , ( t ) - t - ”  (3.28) 

U#, that 

up  to logarithmic factors, with 

v =  v,[l-$(In z)(&i+$,)] (3.29) 

where vu = (In z)/(ln U-’) and where we have once more made use of the CLT and kept 
terms up to first order in the (relative) variances. In this case there is no dependence 
at all on the level L at which the system is prepared. 

In region A we find, once more taking a one-pole approximation to qA”(t), i.e. 
keeping only the leading relaxation time, 

(3.30) 

where we have defined v, =(In  z)/(ln s-’); T is defined as before. Note that in both 
cases we recover the ‘deterministic’ results of [ 16, 171 when the relative variances are 
set to zero. The oscillatory behaviour [lo, 261 of Po( t )  is no longer evident, in the 
general case, due to the destruction of the self-similarity of the functions q;’)( t )  under 
the scaling of t by a uniform U or s in the appropriate regions. However notice that 
this self-similarity is restored on the average in the case we have been treating in this 
section. 

p,( t )  - t -  V \ ( I - $ ( I ~ Z ) ~ ? ~ ( ~ /  ~ ) f s g n [ l n ( r /  T ) l u 5 ( i n . - ) B i  

4. Discussion and application to turbulence 

In the deterministic case-without fluctuations-a generalised hyperscaling relation is 
satisfied by e,, v and the fractal dimensionality DF = In z/ln p, namely 

v = DFBm/m (4.1) 

in those parameter regions where only one time-scaling parameter is relevant. This 
happens to be region A, where hb“=s’ and the hierarchy of relaxation times scales 
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with s, and regions B, C with p m r s <  1 (Ab”-(rs)’<< A!‘), scale parameter rs ) .  By 
contrast, in regions B, C taking pmrs  > 1 brings into play the cutoff I ,  - In t/ln s-l (cf 
[ 16, 171); although the transitions are predominantly downward (rs = W ; /  W ,  < 1) the 
overall mean displacement is limited by the rate of progress up  the levels 1, A:”- s’. 
The interplay between the two different self-similar sets of relaxation times with different 
scale parameters destroys the hyperscaling relation. Generalising the definition of DF 
to the case where the spatial scale factor p and the branching ratio z are randomly 
distributed from level to level, we may write, for any given configuration, 

from which follows 

Comparing (3.29) and (3.30) with (3.21) and (3.26) we immediately see that the terms 
proportional to the variances break the hyperscaling relation between v and Om. This 
is to be expected in view of the above discussion. On the other hand the fact that for 
the particular choice for the W t  treated in 5 3 self-similarity is preserved on the average, 
ensures power-law behaviour for the moments and the autocorrelation function. 

We would now like to discuss the possible relevance of the results found in the 
previous section for diffusion on a random fractal to the case of diffusion in a turbulent 
medium. According to ‘classical’ scaling theories of fully developed turbulence [ 341, 
there is a detailed balance of energy transfer between eddies of different scales. This 
condition of exact detailed balance has been relaxed by various authors, who have 
considered, instead, detailed balance on the average as, for example, in the so-called 
log-normal model [35] or the random-p model recently introduced by Benzi et a1 [36]. 
The random model which we have introduced in this paper goes one step further than 
the random-p model in that it involves random fractal sets in both space [36,37] and 
time [ 14,38-401. 

We define the ratio of the energy transfer per unit mass on the scale of level I - 1 
to the same quantity on the scale of level 1 to be 

(4.3) 
The factor p;’s;’ arises from the fact that E has the dimension of (length)’ (time)-3, 
while the factor p d - D ~  has been included due  to the fact that the eddies are not space 
filling [39] but are concentrated on a multifractal set of dimension DF < d, d being 
the Euclidean dimension of the embedding space. 

d - D ,  -2 -3 
E I - I I E I = p l  PI SI . 

Requiring that 

(4.4) 

where we have defined A E 2 + D ,  - d < 2, implies, once more assuming that the F ,  and 
sI are independently distributed and using the CLT, 

(4.5) 
up  to leading order in the variances. I t  is in region A that the exponent Om is larger 
than one (cf [16]), promising to be the region with which to model the turbulent 
medium. Solving for (In s-’) in (4.5) and substituting in (3.26) we find 

(4.6) 

A(ln p )  + 3(1n s) = i A 2 a E  + zaf 

((x m )),( - t‘ 3 m /  A I[ 1 + $ A < l n  w )i <?: t 
) I  ( t /  i sgn[lni I /  T ) ] i 3 m ’ / ~ ) ( l n  p)(c< -+? 1 
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where again we have kept only the lowest-order terms in 6: in the exponent. We see 
that with large m, the corrections in 6; become negative for t < T, while for t > T they 
are positive for all m. 

These findings agree with those obtained for the velocity structure functions from 
the log-normal model [35] for t < T. 

Contact can be made with the intermittency corrections calculated via the log-normal 
model [35]  or the P-model [41,36] by noting that (x")( t ) ,  which should be interpreted 
as the mth moment of the relative displacement of two diffusing particles, can be 
expressed in terms of the mth-order relative velocity correlation function as follows [42]: 

(x")( t )  - lo' . . . lo' dt ,  . . . dt,,,(v( t l )  . . . U( t m ) ) .  (4.7) 

Claiming that (U( r( t , )  . . . u (  r( 1 , ) ) )  - (U"( r ) ) ,  with ( u r n (  r ) )  - rit,, (this r denotes the 
eddy size and should not be confused with our parameter r, cf (2.6b)), we have 

(x")( t )  - ri,.tm. 

Taking for the average relative displacement r2  - t '2 yields 

e,,, = ;[,e, + m. (4.8) 

Thus [,,, and (e,,, - m) are expected to show the same trend in m. We find this indeed 
to be the case at least for m ( & i + & i ) < <  1 comparing our results for t < T (all length 
scales below the deterministic scale, i.e. the scale of the stirring force) with those of 
Benzi et a1 [34] where the stirring length is taken to be the largest length scale in the 
model. One should also compare (4.8) with our findings for the two-delta-function 
distribution, valid to all orders of the variances, in the region t > T. Recall that Om - m 
for large m in this case, while [,,,, as given by Benzi et a1 [36] tends to a constant for 
large m. 

In concluding this section we would like to compare our results with those previously 
found for RW on other fractal substrates. We note that one may identify the R W  

dimension [43], defined as t - ( x ) d w ,  with our e ; ' ,  namely 

(4.9) 

where the argument in the numerator is s-' in region A and  U-' in region B with 
pruk  < 1,  almost all k. Our model then affords a case where one may explicitly test 
conjectures relating dw and DF, the fractal dimension of the substrate where the R W  

takes place. In particular, in the above application to turbulence, neglecting fluctu- 
ations, 

(4.10) d w  = + ( 2  + DF - d )  

from (4.6). This is to be compared with the Aharony-Stauffer [44] conjecture 

d w  = DF+ 1 (4.11) 
and the Alexander and  Orbach rule [45] implied by 2v = $, 

(4.12) 
The relations (4.11) and (4.12) are inconsistent with (4.10) exceut at  the Darticular 

d - 1  w - 2DF. 

values DF = -( d + 1)/2 and DF = 2(2 - d ) /7  respectively, both clearly unphysical for 
d = 3 .  
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5. Non-algebraic behaviour of moments and correlations 

In this section we would like to give two further examples for the way in which the 
transition rates may be distributed, namely, cases (ii) and (ii i)  of 0 1, yielding, respec- 
tively, a stretched exponential and an exponential-logarithmic form for the moments. 

Case ( i i ) .  Choose W :  = (E;=,  ui) - ' ,  y > 0, L = 0. The U, are independently distributed 
random variables, constrained to be > O  for almost all i. This automatically ensures 
that W : /  WT-, < 1, for almost all 1. If we require, in addition, that W : /  W;+, > 1 for 
almost all 1, we find ourselves in the parameter region A (figure 3). From equation 
(3.3) and (3.4) and the fact that g(T)=dG(T)/dT it follows that the mth moment of 
the displacement from the origin is now given by 

This should be compared with (3.22) with L=O. Making a one-pole approximation 
to the G,(T) ,  we rearrange (5.1) to be 

( (x"')) , ( t )  - [exp( U+,) - 11 C exp(lU+,)(l -exp(-y-Yt))l (5.2) 
I = O  

where the average is now to be taken with respect to the Gaussian distribution for 
y = z ]  vi 

~ , ( y ) - e x p [ - ~ ( y - I ~ ) * / l a t ]  

for 1 large enough, under the usual conditions for the U distribution; B = (U), ut = (( S u ) * ) .  
Performing a saddle-point approximation to the Gaussian average as well as to the 
sum over 1 gives, at the saddle point, Tcc t l 'T Expanding the exponent to first order 
in the relative variances, we have 

(5.3) 

The calculation of the autocorrelation function proceeds along the same lines as before. 
Substituting si')( 1 )  -e-'"-' in (3.27) and once more making saddle-point approxima- 
tions to the integrals over 1 and y, with the weight P l ( y )  as given above, we find 

( (x" ) ) , ( t )  -exp{(m(In p ) / ~ ) [ 1  +fm(In  p ) ( G ~ + 6 . t ) ] t 1 1 y } .  

~o( t ) -exp(-Ct" 'Y+ ' i ) ,  (5.4) 

The constant coefficient in the exponent is 

Hence the moments grow and the correlations decay according to a law of stretched 
exponentials, but with different exponents, the correlations decreasing slower. The 
order m of the moments only affects the prefactor of the stretched exponential but 
not the t exponent, l /y ,  that is only related to the W :  scaling. 

Our results should be compared with those of De Dominicis et a1 [ l l ,  25,271. 
Algebraic scaling of the spectrum with 1 leads to stretched exponentials, while exponen- 
tial scaling of the spectrum implies algebraic time dependence. 
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Case (iii). Next we consider the choice w:= w:, W ;  = wk-'/r, where the wk are 
identically distributed variables living on the level k. I f  the wk have a small variance, 
the overall behaviour of the functions g l (  7) and G,(r )  is not altered. For w k  < 1, 
W:/ W;,' > 1, almost all k, ( ( x ~ ) ) ~ (  t )  is once more given by (5.1), and we may write, 
analogously to (3.23), 

((xm))c(r)-l  d l  [ d w , e ~ l ' f j ( l - l n  r/ln w;')p(w,) (5.5) 

where p(w) is the probability distribution for w. Note that performing the 1 integral 
gives rise to the factor exp( U :  In t / ln w-I) in the integrand, and this diverges exponen- 
tially as w + 1. If  p (  w )  = 0 for w > U', (w, is some constant less than l ) ,  centred at 
some finite value E and having a small relative variance, one obtains an algebraic 
growth law with logarithmic corrections. 

We now consider a distribution that decays sufficiently fast as w -$ 1 so that the w 
integral in (5 .5 )  still converges, namely 

W < W <  w,>o 
(5.6) 

and arbitrary otherwise. Making a saddle-point approximation to the w integral in 
(5.5),  we see that for t sufficiently large ( (U' ,  In t)'" >> l ) ,  the result does not depend 
on w,. We find 

(5 .7)  
It can be seen that the exponent blows up for cy + 1, signalling an exponential behaviour. 
The larger a is, the larger t has to be for the asymptotic behaviour to be observed. 
Note that for cy >> 1 and sufficiently large t the behaviour of ((xm))J t )  will be indistin- 
guishable from a power law, with the effective exponent OKfi= U : .  

We have considered relaxation in three different families of systems, each of which 
possesses infinite, random hierarchies of relaxation times, with, however, different 
types of randomness introduced into each of them. 

In case (i), the relaxation times form a statistically self-similar hierarchy with 
multiplicative disorder, obeying an approximately log-normal distribution. We find 
that the moments and correlation functions retain, up to logarithmic factors, the 
algebraic behaviour found in the homogeneous case, while the exponents acquire 
corrections due to disorder. It is interesting to note that the boundary conditions (the 
time and length scales at which the system is prepared, say, stirred) break the temporal 
and spatial scale invariance of the system and show up in the correlation functions 
with precisely an exponent which goes to zero with the relative variance of the random 
parameters (cf (3.26), (3.30)). The generalised hyperscaling relation between the 
moment (e,) and autocorrelation ( v )  exponents, as well as the linear dependence of 
em on the order of the moment, break down due to the disorder. In contrast, the 
hierarchy of transition rates in case (i i)  constructed from an additive random process, 
namely, ( W:)-''' =E: U, where the U, are independently distributed random variables, 
leads to moments and correlation functions exhibiting a stretched exponential 
behaviour with the same exponent as found for the pure case, although different 
coefficients. The third model (case (iii)) reduces, along with case (i), to the 
homogeneous hierarchical model considered by Grossman et a1 [16] in the limit of 
vanishing disorder; however, for non-zero variances it gives rise to a novel exponential- 
logarithmic behaviour for the moments, which has been found before in the case of 
hopping conduction [31]. 

[ O  constant x exp[ -( 1 - w)-"] w + l  cU>l 
P(W) = 

( ( x " ) ) , ( t )  - e x p [ ( ~ ~ ' ( ' - ~ )  ( c y  - I ) (  U :  In t ) a ' ( a - ' )  I. 
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